
N90 2 c' ''' °

SYSTEM ARCHITECTURES FOR TELEROBOTIC RESEARCH

F. Wallace Harrison

Automation Technology Branch
NASA Langley Research Center

Hampton, Virginia

ABSTRACT

NASA currently supports several activities related to the definition and creation of telerobotic

systems. The effort and investment required to create architectures for these complex systems can
be enormous; however, the magnitude of process can be reduced if structured design techniques are

applied. A number of informal methodologies supporting certain aspects of the design process are
available. More recently, prototypes of integrated tools supporting all phases of system design
from requirements analysis to code generation and hardware layout have begun to appear. This
paper describes activities related to system architecture of telerobots at Langley Research Center
including current activities which are designed to provide a methodology for the comparison and
quantitative analysis of alternative system architectures.

1. INTRODUCTION

Much effort is presently being directed within NASA and other government organizations to
creating architectures for telerobotic systems [1,2,3]; however, there remains a great deal of
confusion over a precise definition of and the scope of the activities associated with the term system
architecture. For example, how is system architecture related to computer and network
architectures and operating, I/O and other systems? Does a system architecture define the organi-
zation of a system or does the organization of a system define a system architecture? We offer these
definitions as a basis for the discussions in this paper. A system is an arrangement of things so
related or connected as to form a complex or unitary whole. Further, we state that a system must
possess a finite set of data, rules, facts, and principles organized and arranged in a regular, orderly
manner so that a useful purpose is served. Architecture is the science and the art of construction
and design; thus, system architecture is the term used to describe activities which ensure that
systems are designed and constructed to meet these definitions. This paper presents a philosophy
of telerobotic system construction as reflected in an approach to building telerobotic systems at
Langley Research Center (LaRC) in the Intelligent Systems Research Laboratory (ISRL).

Section 2 of this paper is a general discussion of the activities related to system architecture in
ISRL. Section 3 describes the Telerobotic System Simulation (TRSS), a real-time telerobotic
simulation and run-time system for the investigation of telerobotic technologies. Section 4
discusses a Capability-based Architecture for Robotics (CBAR), a new architecture for building
evolutionary, structured capabilities into telerobot systems. Section [5] briefly discusses current
activities in system architecture designed to provide the tools for the comparison and quantitative
analysis of alternative system architectures. We conclude by summarizing the lessons we have
learned to date.

419

2. Intelligent Systems Research Laboratory

Telerobotics consists of a huge number of highly specialized and interrelated disciplines and
technologies. The objective of automation research in the Automation Technology Branch (ATB) at
LaRC is to advance technology in specific technology areas (mechanisms, controls, sensors, and

operator interface) required for space-based assembly, servicing, and inspection systems [4].
However, meaningful progress in most of these areas depends on having at least a base-level
capability in and understanding of the range of telerobotic technologies. The Teleoperator and
Robotics System Simulation (TRSS) and the Intelligent Systems Research Laboratory (ISRL) have
been developed to provide these base-level capabilities and is structured to allow and promote
evolutionary development of telerobotic technologies. Development of TRSS began in 1981 by a
small group of researchers and programmers with the objective of investigating the effects of
transport delays on operator performance [5]. The graphical simulation ran on Control Data Corp.,
Cyber 175, used a simulated five degree-of-freedom manipulator, and used displays and controls in
a general purpose aircraft simulator.

Parallel to the TRSS development, ISRL was established as a tool to investigate planning
systems for robotic systems in a more realistic setting than a purely graphical simulation could
provide. Early experiments were directed toward understanding the relationship between
perception, reasoning, and manipulation in a simple blocksworld environment for autonomous
robots as described in reference [6].

ISRL is organized as a distributed, hierarchical collection of teleoperator and robotic
hardware. Each major subsystem consists of a user programmable controller and data
communications hardware. In addition to their primary function each subsystem can be used as a

program development system or as a general purpose computational element. Primary real-time
communications occurs on a 250,000 byte per second packet-switching global bus conforming to

the IEEE 488-1978 standard. Device drivers have been written to support demand-driven, priority-
based network access and shared file system access. The current network configuration is
illustrated in figure 1. Primary subsystems consist of two PUMA manipulators, a vision and laser
ranging system, and an operator interface. Interfaces to a Symbolics 3670 computer, a Control
Data Corporation Cyber 175 and a Redifusion Poly 2000 high-speed graphics subsystem are
provided.

Manipulator _and c0nlrollCr, The two digitally-controlled PUMA robotic arms driven by direct
current servo systems, provide manipulator functions in ISRL. The PUMA, typically used in
"pick-and-place" industrial applications, is a six degree-of-freedom (DOF) anthropomorphic
manipulator. It has been augmented with a parallel jaw gripper and a six DOF force torque sensor.
In its factory configuration, control is provided by a hierarchical controller composed of a master
and six slave microprocessors, each slave providing low-level proportional, integral, derivative
(PID) control of one joint of the manipulator. The master controller is an LSI 11-03
microprocessor with 4000 to 32000 bytes of random access memory for user program storage and
28000 to 30000 bytes of read-only memory containing the VAL operating system.

While the controller and VAL are adequate for many industrial applications, its structure and
programming do not allow the flexibility necessary in a research environment. To obtain this
flexibility, the master controller was replaced with a general purpose computer (LSI 11-73); and,

using VAL as a reference, new software was generated with the necessary capability.
Computational and input/output facilities are enhanced with the addition of a special-purpose
peripheral device drivers, while more general capabilities, such as manipulator initialization,

position and rate control, coordinate transformations, and extended I/O are provided by a library of
FORTRAN functions.

420

E,F,,lld..__[gg.tOL Grasping functions are provided by a microprocessor-controlled parallel jaw
end effector having integral force, proximity, base overload, and crossfire detectors. Finger force
and torque about the X and Y axis can be sensed. Proximity sensors are simple binary, infrared
reflectivity-based emitter-detectors. Cross-fire detectors detect the presence of a work piece between
the jaws by interruption of a light beam.

One of the first telerobotic studies in ISRL was an active compliance task 5]. The finger

force/torque sensors sensed constraint forces during close tolerance peg insertion and fed this data
to control and display modules via the data acquisition system. A simple computer graphics display
indicated the magnitude and direction of the binding forces and torques. Using the display the

operator could readily command the arm to move to null any disturbing forces. A subsequent
modification allowed the operator to select a mode in which the force and torque data were fed
directly to the control system to null the force and torques automatically.

Current ISRL image acquisition and analysis approaches partition this problem area
between man and machine, giving each responsibility for that which it does best. Man serves as the
basic mechanism for image interpretation and understanding, while the machine vision system

performs image acquisition/enhancement/compression and determines the location of objects.
Image acquisition is provided by a Data Cube imaging system interfaced to a Micro-Vax II general-
purpose processor. Current efforts have centered on determining the three-space location and
orientation of labeled objects using a single camera, and research on a multifunction recognition

operator for telerobotic vision [7].

The operator is responsible for moving the camera to acquire a labeled object in the field of
view. Once acquired, simulation modules are provided for vision-based control of the manipulator.
Vision-based control was demonstrated in a recent satellite servicing simulation. After acquiring a

label (in this case, a pattern of light emitting diodes) associated with the simulated experiment
module, the vision system determined the relative location of the module with respect to the camera
and the end effector, and then commanded the manipulator to move to the module under control of

the vision system [8].

A coherent laser scanning system has recently become available in ISRL. Laser scanning
systems promise high accuracy ranging with television-like displays over wide ranges of ambient
illumination [9]. Current efforts are concentrated on generating accurate representations of the

manipulator environment for path planning and collision avoidance.

In 1983, TRSS was interfaced to ISRL. Kinematics of the simulation were converted to
those of a PUMA 560 and the capability for force control was added. In 1985, automatic control
based on vision sensing was added. All TRSS control strategies, based on resolved-motion rate
control, are developed as shared control. That is, all automatic control schemes must continuously
share control with the operator; thus the operator is free at any time to "help" the automatic system.
Conversely, the automatic system is free to aid the operator in task completion. The system
requires no complicated semaphores, signaling mechanisms, or logic to switch between automatic
and teleoperator control. The most significant feature of the TRSS control strategy is that the
reference signal inputs of the manipulator control system is formed as linear combination of outputs
from any number of control/sensor modules. The most obvious advantage of this approach is that
sensors and associated control modules may be distributed, both spatially and temporally, across
multiple processors. Multirate control is almost trivial to implement and the system has some
intrinsic fault tolerance. If sensor communications fails, motion based on that sensor output stops.

3. Telerobotic System Simulation

In 1986, a requirement for task-referenced control of multiple manipulators was generated.
To facilitate the implementation of these capabilities, the simulation was ported from the CYBER

421

175to a VAX/11-750locatedin ISRL and a critical examination of existing TRSS code (a single
thread of code executed once each clock cycle) and system organization was conducted as part of
this activity. The major conclusion of this examination was that the simulation needed to be more

modular in organization. An objective in TRSS is that it provide basic capabilities in specific
technology areas that are of marginal interest to a researcher. Modularization hides the
implementation details of these uninteresting, but interacting, modules so that a researcher need
only to understand its behavior and interface to utilize its capabilities. Another conclusion was that
top-down design was inappropriate for the target environment. Providing capabilities where none
existed before is often the prime objective of a research project. This implies that fixed requirements
specifications and hardware architectures are often not available and that even the high-level
organization of the simulation may change frequently. TRSS should provide mechanisms to make

the reorganization of the simulation possible. A third conclusion was an extraordinarily high
percentage of development time was being spent by research personnel on hardware interfaces and
communications software. The Teleoperator and Robotics Testbed (TART) was conceived and
implemented in response to these limitations. TART consists of a baseline of standard modules and

interfaces, termed capabilities, and a logical organization which defines the operating characteristics
of a telerobotic system. Capabilities facilitate design, coding, and testing of algorithms and aid the
integration of alternative algorithms and software from other sources.

The TART system architecture, as illustrated in figure 2, consists of six layers (L1 through
L6), each supported by the functions and capabilities of the layer below. To the programmer, each
boundary defines an abstract machine on which the functions of the next higher level are defined.
Layers accept commands from and provides feedback to the layer above. The lowest level of
TART, the sensor/actuator layer L6, is defined and fixed by the communications protocols and
physical characteristics of the collection of devices available in ISRL (see discussion above). Servo
level control of manipulators, camera systems, and end effectors and processing of raw sensor data
is provided at L5. In some cases, this processing at this layer is provided by vendor-supplied
equipment. In other cases, such as machine vision, algorithms are provided by ATB researchers.
Inputs to the sensor processing and servo control layer from L4 are the commanded positions and
orientations and/or their derivatives for manipulators, grippers, pointing systems, and other
devices in their local coordinate system. L5 provides preprocessed sensor and control states to the

next higher layer. The electrical voltages and currents to drive motors and actuators are output to
L6. If data rates require the interpolation of set points, this is provided in L5.

The communications layer, L4, maps the input and output from the servo/sensor processes to
a consistent unambiguous representation. The data structures for all similar devices are required to
be identical in form with data scaled to the same units. Thus IA isolates higher levels from the

eccentricities of the underlying hardware and communications protocol. For example, all Cartesian
force/torque sensors have a uniform representation which includes a signal indicating overload
conditions. If a particular force/torque sensor does not generate this signal in hardware, it must be

synthesized in software. Data conversion from device measurement units to laboratory units is also
done at IA. The communications layer is maintained by programming support personnel who have

experience in dealing with real-time communications. The virtual telerobot architecture provided by
L4 functions much like the set of registers available to machine language programmers of computer
systems. Just as one does not have to understand the microprogramming and internal data paths of
a computer to program it, IA isolates the researcher from much of the low level programming of the
telerobot.

The capabilities required to make the devices in ISRL perform as a system are provided in the
coordination and control layer L3. Commands received from L2 are distributed among a number of
control capabilities (vision, force, etc.) based on the task to be performed. Tasks that require more
than one resource, ie. multiarm control or a compliant grasp, are coordinated in L3 by
simultaneously enabling multiple control capabilities with appropriate gains. Coordinate

transformations from world to local device coordinates are performed here. Since the capabilities at

422

this level, suchasforceorvision control, are defined with respect to the TART virtual architecture,

the programmer can focus on algorithm development.

Task primitives (move ann(s), close end effector, etc.) are executed by the task level, L2.
Capabilities in L2 are activated by commands from L1 and enable appropriate control modules in L3
by setting variables in global memory. L2 then monitors the system as the task is performed and
reports success or failure to L1. Each task primitive is implemented as a subroutine and maintained
in a library which is directly linked with the TRSS operator interface program or other applications.
Levels L3 and L2 taken together provide a capability similar to the intrinsic functions of a compiler.

L1 provides the interface between external systems, both man and machine, and the
remainder of TART. Displays for monitoring system status and a command interpreter to
decompose high level commands (move to or grasp an object) into sequences of task primitives are
provided. L1 provides the remainder of the capabilities found in the typical compiler or interpreter.
New task primitives and sequences of commands can be executed, debugged, and evaluated in the
operator interface command language before being programmed as an L2 module. For a discussion
of the use of TART by external system see [6].

These six levels, their functional descriptions and their logical organization, define the TART

system architecture. It should be noted that any implementation is a compromise among a number
of competing requirements (speed, ease of use, cost, etc.). The principle function of the TART
implementation architecture is to support telerobotics research, and ease of use and reduced cost are
emphasized at the expense of performance. In general, layers 4 and above are implemented on a
single MicroVax II microprocessor under the VMS operating system. The virtual machine
architecture is implemented as a installed shareable image making its data structures global to all
processes. Each layer of the architecture is implemented as one or more VMS processes and each
process, once started, is responsible for its own scheduling using the mechanisms offered by the
VMS operating system. Every capability is implemented as a separate process. To the researcher,
this means that refinements and alternatives to algorithms can easily be investigated by stopping the

current process and starting a new. However, the requirement that each capability in the TART ar-
chitecture be a separate process is a major source of overhead and the global accessibility of the
virtual architecture can lead to abuse of the TART design philosophy and subtle programming

errors. The Capability-Based Architecture for Robotics (CBAR), is being developed in response to
these problems.

4. A Capability-Based Architecture for Robotics (CBAR)

The system architecture of CBAR is based on a more formal definition and representation of a
capability. The motivation for creating the abstraction of the capability is related to human
limitations in the ability to manage and understand information and control flow in the design of
complex systems. To overcome this limitation, capabilities have clearly defined function and
operate on a small set of interface data structures with control flow limited to that implied by
changes in each capability's data structures. No explicit command/response mechanism is required.
CBAR encourages the use of modularization in the design process and is amendable to both top-
down (recursive application of the abstraction) and bottom-up (utilization of existing abstractions)
design practices. At all levels of the system design, both function and interface are represented in
only sufficient detail to understand the immediate design and implementation problem. Both the
designer's and implementer's ability to efficiently create systems that behave properly and are easy
to maintain and document is enhanced.

A capability, C, is defined by its set of data structures and an associated transformation and is
represented in figure 3 where P is called the planning data structure, Q is the query data structure, R
is the output data structure, S is the sensor data structure, T is a capability transformation, and A is
a set of attributes. Functionally, a capability transforms S, the world as seen through its sensor data

423

structure,to P, the world as we wish it, by transitioning through a seriesof statesQ while
producingoutputR to effectchangeson its environment.

To betterunderstandthe representation, consider a control engineer's model of a simple
feedback controller capability (see figure 4). The controller has some state (Q) and an algorithm (T)
which forms an output (R) to control a plant based on a set point (P) and feedback from sensors

(S). A more general interpretation can be taken from planning systems. Here a particular situation
or configuration is a problem state (Q) which is derived from sensor data (S) and previous states.
An operator (T) transforms a given state into another state while producing output (R). A solution

to a problem is a sequence of operators that transforms an initial state into a goal state (P). Complex
functional capabilities can be generated by repeated application of the capability abstraction as
illustrated in figure 5. The behavior of a system at any given time is described by the set of active
capabilities and their interconnections and can be represented as a lattice.

The flow of data in the CBAR lattice is bidirectional and nonstationary. Goals flow from the
top of the lattice to the bottom through the P data structures with increasing levels of detail. State
information flows from bottom to top through the Q data structures with decreasing detail. The
form of the lattice is determined by the active set of goals and states.

Two degenerate capabilities that are of interest are best explained by an example. Consider the
feedback controller discussed above used to control a plant consisting of an amplifier-driven motor
and position encoder. The problem, depicted in figure 6, is to generate a set of motor currents to

drive the motor through amplifier A to a state sensed through encoder E. C3, called an input
capability, transforms (not necessarily linearly) from sensor E internal units to a more convenient

representation (angular displacement, velocity, etc.) and makes the coding of C1, the control
algorithm, much more tractable. C2, an output capability, functions in a similar manner but
generates actuator control signals.

Dynamic reconfiguration of the lattice is accomplished through contact and disconnect

mechanisms. A capability ready to execute is said to be contacted. Capabilities are contacted by a
name, C, assigned as they are created (currently the file name qualified by subroutine name) with a
desired set of access fights. The access fights are compared with the current accessibility attributes

and the contact is either allowed or denied. If a contact is allowed, the capabilities exchange
information regarding the location of their data structures and a count of the number of contacts is
incremented.

Links in the lattice are broken when a capability is no longer required via a disconnect

mechanism and a capability with no contacts is said to be disconnected. A capability receiving a
disconnect signal decreases its contact count and, if zero, terminates execution.

Accessibility attributes refer to the permissible read and write access modes applied to the data

structures of a capability and are placed to the fight of the directed line segments. Any capability
always has read access to its own planning data structure (P) and write access to its query data
structure (Q); however, external access to P and Q are strictly enforced. Read access (RA.) means
that only a single external routine can read a capability's Q data structure and implies that a
capability can be contacted by only a single external source. For example, in figure 6 capability C1
has exclusive ownership of C2 preventing other processes from controlling the amplifier drive
signal. Write access (WA) means that only a single external process can write to a capabilities P
data structure, but is not sufficient in itself to insure sole ownership. Read shared (RS) and write
shared (WS) access means that multiple external routine have access to a capabilitiy's P and Q data

structures respectively. In figure 6, capability C3 is contacted by C1 with RS access implying that
other external routines may access and monitor the position and rate of the motor.

424

Consideranexpandedthreelevelimplementationof thepreviousmotorcontrollerexamplein
figure 7. LevelsL2 andL3 areidenticalin form andfunctionto figure 6; however,anadditional
layer L1 hasbeenaddedto monitor the controller andprovide a statusindication to external
routines. The sensorcapability,C3, hasbeencontactedwith RSaccessto allow simultaneous
accessto its Qdatastructureby bothC1andC4. NotethatC4couldhavemonitoredpositionand
rate throughQ3 but this resultsin a communicationsdelay, lessreliability, andmorecompute
overhead.

5. CURRENTWORK

Predictingtheperformanceof architecturesfor complexsystemsduring early designand
developmentis a difficult anddemandingtask.Typically, accuratequantitativemeasuresare
unavailableuntil latein thedesignprocessleavingmanykeydecisionsto reston theexperienceand
prejudicesof thedesigner.Until thesubjectiveelementsof theprocesscanbesignificantlyreduced,
the designandimplementationof systemarchitectureswill remainmore anart thana science.
Today, it would beunthinkableto attemptthe designof acomputersystemwithout appropriate
computer-aideddesigntools. Thequality andquantityof toolsfor theVLSI designhaveincreased
dramaticallysincetheir introductionin the 1960's. More recently, similar toolshavebeenintro-
ducedfor softwaredesign;however,fewtoolsto aidthe integrationof bothhardwareandsoftware
in the creation of complex system(suchas telerobots)exist. The Architecture Design and
AssessmentSystem(ADAS), asetof computer-aideddesigntoolssupportingsystemdesignfrom
initial conceptthrough hardware/softwareimplementation,hasbeendevelopedby Research
TriangleInstitute(RTI) [10]. ADAS is a collection of tools that can be used to identify pathologies
early in the design process so that alternatives can be created and analyzed. LaRC and RTI are
currently modeling TRSS and the TART architecture using ADAS with the objective of developing
a methodology for the comparative analysis of telerobotic architectures.

Using the ADAS graphical interface, the hardware and software designs of three systems:
TRSS/TART, TRSS/CBAR, and the FTS/NASREM are being modeled and analyzed.
TRSS/TART, because of the availability of detailed performance data, will be used to validate the
modeling and analysis techniques. ADAS is also an integral element of the CBAR design and
implementation. The design will be captured as data flow graphs and mapped to hardware. All
design decisions will be evaluated via simulation to pinpoint bottlenecks and determine the best
partition between hardware and software. As details of the NASREM/FTS architecture are made
available, functional simulations will be conducted to validate the design.

The CBAR implementation architecture is currently under development. A simplified
representation of TRSS control architecture in CBAR form is being used as a model for the first
prototype. Major design decisions are being evaluated using the Architectural Design and
Assessment System to provide quantitative performance analysis before implementation.

6. CONCLUDING REMARKS

At LaRC, architectural endeavors have evolved into two distinct activities. System architecture
activities are concerned with the functional characteristics and the logical organization of a system.
As such, it is principally a conceptual and philosophical activity that results in a system design
specification, a detailed understanding of what the system is to do and how it is logically organized.
The implementation architecture phase translates the system design specification into a detailed
implementation plan by mapping the system architecture onto the hardware and software
subsystems. The partitioning has important practical implications. Partitioning the architectural
design makes each phase more tractable by limiting the number of degrees of freedom in each step;
and, properly done, new device technologies and algorithms can be incorporated into the system

without scrapping or compromising the entire design specification. For example, several families of

425

computershavebeendesignedwhich sharecommonsystemarchitecturewith performanceranges
of 1-100andyet mostsoftwarewritten andcompiledandlinkedon onemachinecanrunon any
otherfamily member.

The role of the systemarchitectin a researchenvironmentis at bestdifficult. The system
architectis typically concernedwith topicssuchasrequirementsengineering,designspecification,
implementationarchitectures,testing,validation,andmaintenance.It is sufficientto saythat to
most researchers,thesetopicsarenot of paramountimportance,yet the differencebetweena
project's successand failure is often correlatedwith the quality of its supporting systems
engineering.Certainly, the utility of the project'sresultsto othersis enhancedwhen sufficient
attentionisgiven.

What aresomeof theattributesof a "good" systemarchitecture?First,thereis a consistent
designphilosophy. Well-defined softwareand hardwarestructureswith a carefully designed
minimized rule setare theresult and enableprogrammersto createefficient and maintainable
applications.High-level languagesandadequatedocumentationareabsoluterequirements.We
maintainthatthecurrentdebateovertheneedfor a"standardized"telerobotcontrolsystemarchitec-
ture is unnecessaryanddistracting. With imagination,thought,andcommitmentwecanbuild
systemswhich insteadof stiflingcreativity,will encourageit; insteadof lockingusintoproprietary
systems,will facilitate their introduction;and insteadof beingrigidly confining,will be easily
extendable.

BIBLIOGRAPHY

[1] Albus,JamesS.,McCain,Harry G,Lumia,Ronald:"NASA/NBSStandardReferenceModel
for TelerobotControlSystemArchitecture(NASREM),"NationalBureauof Standards,NBS
TechnicalNote1235,July 1987.

[2] Matijevic,J. andDolinsky,S.: "FunctionalRequirementsfor theTeleroboticTestbedProject,"
JetPropulsionLaboratory,JPLinternaldocumentD-3693,December1988.

[3] Harrison,F.Wallace,andPennington,JackE.: "SystemSimulationsSupportingNASA
Telerobotics,"presentedattheWorkshopon SpaceTelerobotics,Pasadena,California,January
1987.

[4] Sliwa,NancyE.: "TeleroboticResearchat LangleyResearchCenter,"presentedattheSpace
OperationsAutomationandRoboticsConference,Houston,Texas,August1987.

[5] Pennington,JackE.: "A RateControlledTeleoperatorTaskwith SimulatedTime
Delays,"NASALangleyResearchCenter,TM-85653,September1983.

[6] Orlando,NancyE.: "An IntelligentRoboticsControlScheme,"presentedattheAmerican
ControlsConference,SanDiego,California,June1984.

[7] Goode,PlesentW, andComils,Karin: "MonovisionTechniquesfor Telerobots,"presentedat
theWorkshoponSpaceTelerobotics,Pasadena,California,January1987.

[8] Cornils,Karin andGoode,PlesentW.: "Locationof PlanarTargetsin ThreeSpacefrom
MonocularImages,"presentedat theGoddardConferenceonSpaceApplicationsof Artificial
IntelligenceandRobotics,May 1987.

[9] Goodwin,F. El: "CoherentLaserRadar3-D Vision Sensor,"Proceedingsof Sensors'85,
November1985.

426

[10] Ingogly, W. F., McLin, D. M., Morrill, R. R., Frank, G. A., and Franke, D. L.: "The
Evaluation of 1750A Hardware Implementation Using ADAS," NASA Langley Research Center,
CR-178247, January 1987.

427

I Gcaphlcs Processo¢(Poty 2000) I

............I!
I

_'fi_ID 8-DOF

Comrol SUlon

LEGEND
IEEE_4

:+:.:+:+:

-- MISG C41_LES

OEDCATED PA%q_UEL

m

I 8y_NNtl Coorcliftal_r CYgERI"/_(MIOrOVU II) H]

.... I_

I Ill

J,

External Systems

L1 Interpretation and Display

L2 Task command

L3 Control & Coordination

L 4 Communications

L5 Sensor Processing and Serve Control

L6 Sensor & Actuators

User

Architecture

Telk Level

Arch Itecture

Function

Architecture

Virtuil Tetsrobot

Architecture

Serve/Sensor

Architecture

Device

Architecture

Figure 1. ISRL Physical Layout.

Real World

Figure 2. The TART System Architecture.

T
Ld

A C

Figure 3. Capability Representation. Figure 4. Control system interpretation of a capability.

428

T1

A1

IA272021
_bGb

oil

_ Q3/stl

AO CO

AO

WA

L1

L2

L3

Level

Figure 5. Hierarchical Capability Representation.

_1 (x=.xa) =talu= .CONE
_1 iXoX_i)ee,a_=. ABORT

C,I

I"', IA

NA

ED

Figure 6. Simple control system.

Figure 7. Expanded control system design.

429

